A simple electrochemical platform based on pectin stabilized gold nanoparticles for picomolar detection of biologically toxic amitrole†
Abstract
Amitrole is a biologically toxic nonselective herbicide which contaminates surface and ground waters at unprecedented rates. All reported modified electrodes that detect amitrole within sub-micromolar to nanomolar levels were based on the electro-oxidation of amitrole. Herein, we developed a new conceptual idea to detect picomolar concentrations of amitrole based on calcium cross linked pectin stabilized gold nanoparticle (CCLP-GNP) film modified electrode which was prepared by electrodeposition. When the electrochemical behavior of amitrole was investigated at the CCLP-GNP film, the reduction peak current of the GNPs linearly decreased as the concentration of amitrole increases. We have designed a determination platform based on the amitrole dependent decrease of the GNP cathodic peak. The described concept and high sensitivity of square wave voltammetry together facilitate the great sensing ability; as a result the described approach is able to reach a low detection limit of 36 pM which surpassed the detection limits of existing protocols. The sensor presents a good ability to determine amitrole in two linear concentration ranges: (1) 100 pM–1500 pM with a detection limit of 36 pM; (2) 100 nM–1500 nM with a detection limit of 20 nM. The preparation of CCLP-GNPs is simple, rapid and does not require any reducing agents.