Issue 14, 2015

Use of solid-state nanopores for sensing co-translocational deformation of nano-liposomes

Abstract

Membrane deformation of nano-vesicles is crucial in many cellular processes such as virus entry into the host cell, membrane fusion, and endo- and exocytosis; however, studying the deformation of sub-100 nm soft vesicles is very challenging using the conventional techniques. In this paper, we report detecting co-translocational deformation of individual 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) nano-liposomes using solid-state nanopores. Electrokinetic translocation through the nanopore caused the soft DOPC liposomes (85 nm diameter) to change their shape, which we attribute to the strong electric field strength and physical confinement inside the pore. The experiments were performed at varying transmembrane voltages and the deformation was observed to mount up with increasing applied voltage and followed an exponential trend. Numerical simulations were performed to simulate the concentrated electric field strength inside the nanopore and a field strength of 14 kV cm−1 (at 600 mV applied voltage) was achieved at the pore center. The electric field strength inside the nanopore is much higher than the field strength known to cause deformation of 15–30 μm giant membrane vesicles. As a control, we also performed experiments with rigid polystyrene beads that did not show any deformation during translocation events, which further established our hypothesis of co-translocational deformation of liposomes. Our technique presents an innovative and high throughput means for investigating deformation behavior of soft nano-vesicles.

Graphical abstract: Use of solid-state nanopores for sensing co-translocational deformation of nano-liposomes

Supplementary files

Article information

Article type
Paper
Submitted
04 Feb 2015
Accepted
17 Mar 2015
First published
17 Mar 2015

Analyst, 2015,140, 4865-4873

Author version available

Use of solid-state nanopores for sensing co-translocational deformation of nano-liposomes

G. Goyal, A. Darvish and M. J. Kim, Analyst, 2015, 140, 4865 DOI: 10.1039/C5AN00250H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements