Graphene oxide-encoded Ag nanoshells with single-particle detection sensitivity towards cancer cell imaging based on SERRS†
Abstract
Developing ultrasensitive Raman nanoprobes is one of the emerging interests in the field of biosensing and bioimaging. Herein, we constructed a new type of surface-enhanced resonance Raman scattering nanoprobe composed of an Ag nanoshell as a surface-enhanced Raman scattering-active nanostructure, which was encapsulated with 4,7,10-trioxa-1,13-tridecanediamine-functionalized graphene oxide as an ultrasensitive Raman reporter exhibiting strong resonance Raman scattering including distinct D and G modes. The designed nanoprobe was able to produce much more intense and simpler Raman signals even at a single particle level than the Ag nanoshell bearing a well-known Raman reporter, which is beneficial for the sensitive detection of a target in a complex biological system. Finally, this ultrasensitive nanoprobe successfully demonstrated its potential for bioimaging of cancer cells using Raman spectroscopy.