Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 21, 2015
Previous Article Next Article

NIR optical carbon dioxide sensors based on highly photostable dihydroxy-aza-BODIPY dyes

Author affiliations

Abstract

A new class of pH-sensitive indicator dyes for optical carbon dioxide sensors based on di-OH-aza-BODIPYs is presented. These colorimetric indicators show absorption maxima in the near infrared range (λmax 670–700 nm for the neutral form, λmax 725–760 nm for the mono-anionic form, λmax 785–830 nm for the di-anionic form), high molar absorption coefficients of up to 77 000 M−1 cm−1 and unmatched photostability. Depending on the electron-withdrawing or electron-donating effect of the substituents the pKa values are tunable (8.7–10.7). Therefore, optical carbon dioxide sensors based on the presented dyes cover diverse dynamic ranges (0.007–2 kPa; 0.18–20 kPa and 0.2–100 kPa), which enables different applications varying from marine science and environmental monitoring to food packaging. The sensors are outstandingly photostable in the absence and presence of carbon dioxide and can be read out via absorption or via the luminescence-based ratiometric scheme using the absorption-modulated inner-filter effect. Monitoring of the carbon dioxide production/consumption of a Hebe plant is demonstrated.

Graphical abstract: NIR optical carbon dioxide sensors based on highly photostable dihydroxy-aza-BODIPY dyes

Back to tab navigation

Supplementary files

Article information


Submitted
04 Feb 2015
Accepted
18 Apr 2015
First published
20 Apr 2015

This article is Open Access

J. Mater. Chem. C, 2015,3, 5474-5483
Article type
Paper
Author version available

NIR optical carbon dioxide sensors based on highly photostable dihydroxy-aza-BODIPY dyes

S. Schutting, T. Jokic, M. Strobl, S. M. Borisov, D. D. Beer and I. Klimant, J. Mater. Chem. C, 2015, 3, 5474
DOI: 10.1039/C5TC00346F

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements