Issue 7, 2015

π-Expanded coumarins: synthesis, optical properties and applications

Abstract

Coumarins fused with other aromatic units have recently emerged as a hot topic of research. Their synthesis is partly based on classical methodologies such as Pechmann reaction or Knoevenagel condensation, but it also sparked the discovery of completely new pathways. In very recent years so-called vertically expanded coumarins were synthesized, effectively expanding the portfolio of existing architectures. A subtle relationship exists between the structure of fused coumarins and their optical properties. Although absorption of UV-radiation and light is a unifying theme among these π-expanded coumarins, the fluorescence properties strongly depend on the structure. The mode of fusion, the type of additional ring and the presence of electron-donating and electron-withdrawing substituents all influence the photophysical parameters. Recent advances made it possible to modulate their absorption from 300 nm to 550 nm, resulting in new coumarins emitting orange light. This review serves as a guide through both synthesis strategies and structure–property relationship nuances. Strong intramolecular charge-transfer character made it possible to reach suitable values of two-photon absorption cross-section. Photophysical advantages of π-expanded coumarins have been already utilized in fluorescent probes and two-photon excited fluorescence microscopy.

Graphical abstract: π-Expanded coumarins: synthesis, optical properties and applications

Article information

Article type
Review Article
Submitted
21 Nov 2014
Accepted
17 Dec 2014
First published
22 Dec 2014

J. Mater. Chem. C, 2015,3, 1421-1446

Author version available

π-Expanded coumarins: synthesis, optical properties and applications

M. Tasior, D. Kim, S. Singha, M. Krzeszewski, K. H. Ahn and D. T. Gryko, J. Mater. Chem. C, 2015, 3, 1421 DOI: 10.1039/C4TC02665A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements