Issue 45, 2015

Hybrid layer-by-layer composites based on a conducting polyelectrolyte and Fe3O4 nanostructures grafted onto graphene for supercapacitor application

Abstract

Using the layer-by-layer process, we developed a new and original ternary hybrid material based on magnetite iron oxide raspberry nanostructures, 250–300 nm in size, synthesized directly on few layer graphene (Fe3O4@FLG) alternated with conducting poly(3,4-ethylenedioxy thiophene):poly(styrene sulfonate) (PEDOT:PSS) as the electrode material for supercapacitors. Magnetite based nanostructures were used as electroactive materials. Graphene and PEDOT:PSS ensured the electrical conductivity. PEDOT:PSS also plays the role of a binder conferring cohesion to the hybrid material. Using spin-coating, the step-by-step buildup leads to very regular and well controlled film properties such as the film thickness and the content of iron oxide. The electrochemical properties of the so-obtained hybrid material were investigated in 0.5 M Na2SO3 aqueous electrolyte by cyclic voltammetry, electrochemical impedance spectroscopy and chronopotentiometry. In contradiction with the reported poor capacitance and poor cycling stability of iron oxide based supercapacitors, hybrid Fe3O4@FLG/PEDOT:PSS multilayers provide a high specific capacitance (153 F g−1 at 0.1 A g−1) and a high structural and cycling stability (114% retention after 3500 cycles). This hybrid developed system opens the route for even higher specific capacitance using other types of metal oxides.

Graphical abstract: Hybrid layer-by-layer composites based on a conducting polyelectrolyte and Fe3O4 nanostructures grafted onto graphene for supercapacitor application

Supplementary files

Article information

Article type
Paper
Submitted
08 Jul 2015
Accepted
30 Sep 2015
First published
30 Sep 2015

J. Mater. Chem. A, 2015,3, 22877-22885

Hybrid layer-by-layer composites based on a conducting polyelectrolyte and Fe3O4 nanostructures grafted onto graphene for supercapacitor application

E. Pardieu, S. Pronkin, M. Dolci, T. Dintzer, B. P. Pichon, D. Begin, C. Pham-Huu, P. Schaaf, S. Begin-Colin and F. Boulmedais, J. Mater. Chem. A, 2015, 3, 22877 DOI: 10.1039/C5TA05132K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements