Issue 9, 2015

A soluble molecular variant of the semiconducting silicondiselenide


Silicondiselenide is a semiconductor and exists as an insoluble polymer (SiSe2)n which is prepared by reacting elemental silicon with selenium powder in the temperature range of 400–850 °C. Herein, we report on the synthesis, isolation, and characterization of carbene stabilized molecular silicondiselenide in the form of (cAAC)2Si2Se4 (3) [cAAC = cyclic alkyl(amino)carbene]. 3 is synthesized via reaction of diatomic silicon(0) compound (cAAC)2Si2 (2) with black selenium powder at −78 °C to room temperature. The intensely orange colored compound 3 is soluble in polar organic solvents and stable at room temperature for a month under an inert atmosphere. 3 decomposes above 245 °C. The molecular structure of 3 has been confirmed by X-ray single crystal diffraction. It is also characterized by UV-vis, IR, Raman spectroscopy and mass spectrometry. The stability, bonding, and electron density distributions of 3 have been studied by theoretical calculations.

Graphical abstract: A soluble molecular variant of the semiconducting silicondiselenide

Supplementary files

Article information

Article type
Edge Article
25 Apr 2015
17 Jun 2015
First published
18 Jun 2015
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY license

Chem. Sci., 2015,6, 5230-5234

A soluble molecular variant of the semiconducting silicondiselenide

K. Chandra Mondal, S. Roy, B. Dittrich, B. Maity, S. Dutta, D. Koley, S. K. Vasa, R. Linser, S. Dechert and H. W. Roesky, Chem. Sci., 2015, 6, 5230 DOI: 10.1039/C5SC01516B

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity