Jump to main content
Jump to site search

Issue 17, 2015
Previous Article Next Article

Mechanisms of nanosilver-induced toxicological effects: more attention should be paid to its sublethal effects

Author affiliations

Abstract

Due to its unique physicochemical properties and remarkable antimicrobial activity, nanosilver (nAg) is increasingly being used in a wide array of fields, including medicine and personal care products. Despite substantial progress being made towards the understanding of the acute toxicity of nAg, large knowledge gaps still exist on the assessment of its chronic toxicity to humans. Chronic effects of nAg, typically at low doses (i.e. sublethal doses) should be different from the acute toxicity at high doses (i.e., lethal doses), which is analogous to other environmental pollutants. Although a few review papers have elaborated the findings on nAg-mediated toxicity, most of them only discussed overt toxicity of nAg at high-level exposure and failed to evaluate the chronic and cumulative effects of nAg at sublethal doses. Therefore, it is necessary to more stringently scrutinize the sublethal toxicity of nAg under environmentally relevant conditions. Herein, we recapitulated recent findings on the sublethal effects of nAg toxicity performed by our groups and others. We then discussed the molecular mechanisms by which nAg exerts its toxicity under low concentrations and compared that with nAg-induced cell death.

Graphical abstract: Mechanisms of nanosilver-induced toxicological effects: more attention should be paid to its sublethal effects

Back to tab navigation

Publication details

The article was received on 17 Feb 2015, accepted on 25 Mar 2015 and first published on 26 Mar 2015


Article type: Review Article
DOI: 10.1039/C5NR01133G
Nanoscale, 2015,7, 7470-7481

  •   Request permissions

    Mechanisms of nanosilver-induced toxicological effects: more attention should be paid to its sublethal effects

    Z. Wang, T. Xia and S. Liu, Nanoscale, 2015, 7, 7470
    DOI: 10.1039/C5NR01133G

Search articles by author

Spotlight

Advertisements