Jump to main content
Jump to site search

Issue 17, 2015
Previous Article Next Article

Interferometric nanoporous anodic alumina photonic coatings for optical sensing

Author affiliations

Abstract

Herein, we present a systematic study on the development, optical optimization and sensing applicability of colored photonic coatings based on nanoporous anodic alumina films grown on aluminum substrates. These optical nanostructures, so-called distributed Bragg reflectors (NAA-DBRs), are fabricated by galvanostatic pulse anodization process, in which the current density is altered in a periodic manner in order to engineer the effective medium of the resulting photonic coatings. As-prepared NAA-DBR photonic coatings present brilliant interference colors on the surface of aluminum, which can be tuned at will within the UV-visible spectrum by means of the anodization profile. A broad library of NAA-DBR colors is produced by means of different anodization profiles. Then, the effective medium of these NAA-DBR photonic coatings is systematically assessed in terms of optical sensitivity, low limit of detection and linearity by reflectometric interference spectroscopy (RIfS) in order to optimize their nanoporous structure toward optical sensors with enhanced sensing performance. Finally, we demonstrate the applicability of these photonic nanostructures as optical platforms by selectively detecting gold(III) ions in aqueous solutions. The obtained results reveal that optimized NAA-DBR photonic coatings can achieve an outstanding sensing performance for gold(III) ions, with a sensitivity of 22.16 nm μM−1, a low limit of detection of 0.156 μM (i.e. 30.7 ppb) and excellent linearity within the working range (0.9983).

Graphical abstract: Interferometric nanoporous anodic alumina photonic coatings for optical sensing

Back to tab navigation

Supplementary files

Article information


Submitted
17 Jan 2015
Accepted
26 Mar 2015
First published
27 Mar 2015

Nanoscale, 2015,7, 7770-7779
Article type
Paper

Interferometric nanoporous anodic alumina photonic coatings for optical sensing

Y. Chen, A. Santos, Y. Wang, T. Kumeria, C. Wang, J. Li and D. Losic, Nanoscale, 2015, 7, 7770
DOI: 10.1039/C5NR00369E

Social activity

Search articles by author

Spotlight

Advertisements