Jump to main content
Jump to site search

Issue 7, 2015
Previous Article Next Article

Polyacetylenes from carrots (Daucus carota) improve glucose uptake in vitro in adipocytes and myotubes

Author affiliations

Abstract

A dichloromethane (DCM) extract of carrot roots was found to stimulate insulin-dependent glucose uptake (GU) in adipocytes in a dose dependent manner. Bioassay-guided fractionation of the DCM extract resulted in the isolation of the polyacetylenes falcarinol and falcarindiol. Both polyacetylenes were able to significantly stimulate basal and/or insulin-dependent GU in 3T3-L1 adipocytes and porcine myotube cell cultures in a dose-dependent manner. Falcarindiol increased peroxisome proliferator-activated receptor (PPAR)γ-mediated transactivation significantly at concentrations of 3, 10 and 30 μM, while PPARγ-mediated transactivation by falcarinol was only observed at 10 μM. Docking studies accordingly indicated that falcarindiol binds to the ligand binding domain of PPARγ with higher affinity than falcarinol and that both polyacetylenes exhibit characteristics of PPARγ partial agonists. Falcarinol was shown to inhibit adipocyte differentiation as evident by gene expression studies and Oil Red O staining, whereas falcarindiol did not inhibit adipocyte differentiation, which indicates that these polyacetylenes have distinct modes of action. The results of the present study suggest that falcarinol and falcarindiol may represent scaffolds for novel partial PPARγ agonists with possible antidiabetic properties.

Graphical abstract: Polyacetylenes from carrots (Daucus carota) improve glucose uptake in vitro in adipocytes and myotubes

Back to tab navigation

Article information


Submitted
04 Mar 2015
Accepted
04 May 2015
First published
07 May 2015

This article is Open Access

Food Funct., 2015,6, 2135-2144
Article type
Paper
Author version available

Polyacetylenes from carrots (Daucus carota) improve glucose uptake in vitro in adipocytes and myotubes

R. B. El-Houri, D. Kotowska, K. B. Christensen, S. Bhattacharya, N. Oksbjerg, G. Wolber, K. Kristiansen and L. P. Christensen, Food Funct., 2015, 6, 2135
DOI: 10.1039/C5FO00223K

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements