Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance work on Wednesday 21st October 2020 from 07:00 AM to 07:00 PM (BST).

During this time our website performance may be temporarily affected. We apologise for any inconvenience this might cause and thank you for your patience.


Volume 181, 2015
Previous Article Next Article

Directing the orientational alignment of anisotropic magnetic nanoparticles using dynamic magnetic fields

Author affiliations

Abstract

The structure-directing influence of static and dynamic, i.e. rotating, magnetic fields on the orientational alignment of spindle-type hematite particles with a high aspect ratio is investigated. Structural characterization using electron microscopy and small-angle X-ray scattering confirms a nearly collinear particle arrangement with orientation of the main particle axis either parallel or perpendicular to the substrate as directed by the magnetic field geometry. The combination of large structural and magnetocrystalline anisotropies results in significantly different, strongly anisotropic magnetic properties of the assemblies revealed by directional magnetization measurements.

Back to tab navigation

Associated articles

Additions and corrections

Article information


Submitted
01 Dec 2014
Accepted
05 Jan 2015
First published
08 Jan 2015

This article is Open Access

Faraday Discuss., 2015,181, 449-461
Article type
Paper

Directing the orientational alignment of anisotropic magnetic nanoparticles using dynamic magnetic fields

D. Hoffelner, M. Kundt, A. M. Schmidt, E. Kentzinger, P. Bender and S. Disch, Faraday Discuss., 2015, 181, 449
DOI: 10.1039/C4FD00242C

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements