Issue 2, 2015

Environmental and economic assessment of lactic acid production from glycerol using cascade bio- and chemocatalysis

Abstract

Recently, lactic acid has emerged as one of the most relevant platform molecules for the preparation of bio-chemicals. Due to the limited productivity of sugar fermentation, the dominant industrial technology practiced for its manufacture, new chemocatalytic processes are being developed in order to meet the expected demand for this intermediate. The Lewis-acid catalysed isomerisation of dihydroxyacetone has attracted particular interest. If the reaction is performed in water, lactic acid is attained directly, while if alcohol is used as the solvent, the desired product can be obtained upon subsequent hydrolysis of the alkyl lactates formed. Herein, we (i) demonstrate tin-containing MFI zeolites prepared by scalable methods as highly active, selective and recyclable catalysts able to operate in concentrated dihydroxyacetone aqueous and methanolic solutions, and (ii) reveal by life cycle analysis that a process comprising the enzymatic production of dihydroxyacetone from crude glycerol and its chemocatalytic isomerisation in methanol is advantageous for the production of lactic acid compared to glucose fermentation in terms of both sustainability and operating costs. In particular, we demonstrate that the reduced energy requirements and CO2 emissions of the cascade process originate from the valorisation of a waste feedstock and from the high performance and recyclability of the zeolite catalyst and that the economic advantage is strongly determined by the comparably low market price of glycerol. It is also shown that the bio-/chemocatalytic route remains ecologically and economically more attractive even if the purity of glycerol is as low as 38%.

Graphical abstract: Environmental and economic assessment of lactic acid production from glycerol using cascade bio- and chemocatalysis

Supplementary files

Article information

Article type
Paper
Submitted
22 Oct 2014
Accepted
05 Nov 2014
First published
05 Nov 2014

Energy Environ. Sci., 2015,8, 558-567

Author version available

Environmental and economic assessment of lactic acid production from glycerol using cascade bio- and chemocatalysis

M. Morales, P. Y. Dapsens, I. Giovinazzo, J. Witte, C. Mondelli, S. Papadokonstantakis, K. Hungerbühler and J. Pérez-Ramírez, Energy Environ. Sci., 2015, 8, 558 DOI: 10.1039/C4EE03352C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements