Jump to main content
Jump to site search

Issue 12, 2015
Previous Article Next Article

Unparalleled lithium and sodium superionic conduction in solid electrolytes with large monovalent cage-like anions

Author affiliations

Abstract

Solid electrolytes with sufficiently high conductivities and stabilities are the elusive answer to the inherent shortcomings of organic liquid electrolytes prevalent in today's rechargeable batteries. We recently revealed a novel fast-ion-conducting sodium salt, Na2B12H12, which contains large, icosahedral, divalent B12H122− anions that enable impressive superionic conductivity, albeit only above its 529 K phase transition. Its lithium congener, Li2B12H12, possesses an even more technologically prohibitive transition temperature above 600 K. Here we show that the chemically related LiCB11H12 and NaCB11H12 salts, which contain icosahedral, monovalent CB11H12 anions, both exhibit much lower transition temperatures near 400 K and 380 K, respectively, and truly stellar ionic conductivities (>0.1 S cm−1) unmatched by any other known polycrystalline materials at these temperatures. With proper modifications, we are confident that room-temperature-stabilized superionic salts incorporating such large polyhedral anion building blocks are attainable, thus enhancing their future prospects as practical electrolyte materials in next-generation, all-solid-state batteries.

Graphical abstract: Unparalleled lithium and sodium superionic conduction in solid electrolytes with large monovalent cage-like anions

Back to tab navigation

Supplementary files

Publication details

The article was received on 04 Aug 2015, accepted on 08 Oct 2015 and first published on 08 Oct 2015


Article type: Paper
DOI: 10.1039/C5EE02941D
Author version
available:
Download author version (PDF)
Energy Environ. Sci., 2015,8, 3637-3645

  •   Request permissions

    Unparalleled lithium and sodium superionic conduction in solid electrolytes with large monovalent cage-like anions

    W. S. Tang, A. Unemoto, W. Zhou, V. Stavila, M. Matsuo, H. Wu, S. Orimo and T. J. Udovic, Energy Environ. Sci., 2015, 8, 3637
    DOI: 10.1039/C5EE02941D

Search articles by author

Spotlight

Advertisements