Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance work on Wednesday 21st October 2020 from 07:00 AM to 07:00 PM (BST).

During this time our website performance may be temporarily affected. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 8, 2015
Previous Article Next Article

Metal–organic framework based mixed matrix membranes: a solution for highly efficient CO2 capture?

Author affiliations

Abstract

The field of metal–organic framework based mixed matrix membranes (M4s) is critically reviewed, with special emphasis on their application in CO2 capture during energy generation. After introducing the most relevant parameters affecting membrane performance, we define targets in terms of selectivity and productivity based on existing literature on process design for pre- and post-combustion CO2 capture. Subsequently, the state of the art in M4s is reviewed against these targets. Because final application of these membranes will only be possible if thin separation layers can be produced, the latest advances in the manufacture of M4 hollow fibers are discussed. Finally, the recent efforts in understanding the separation performance of these complex composite materials and future research directions are outlined.

Graphical abstract: Metal–organic framework based mixed matrix membranes: a solution for highly efficient CO2 capture?

Back to tab navigation

Supplementary files

Article information


Submitted
29 Nov 2014
First published
18 Feb 2015

This article is Open Access

Chem. Soc. Rev., 2015,44, 2421-2454
Article type
Review Article
Author version available

Metal–organic framework based mixed matrix membranes: a solution for highly efficient CO2 capture?

B. Seoane, J. Coronas, I. Gascon, M. E. Benavides, O. Karvan, J. Caro, F. Kapteijn and J. Gascon, Chem. Soc. Rev., 2015, 44, 2421
DOI: 10.1039/C4CS00437J

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements