Issue 7, 2015

Correlation between the surface electronic structure and CO-oxidation activity of Pt alloys

Abstract

The surface electronic structure and CO-oxidation activity of Pt and Pt alloys, Pt3T (T = Ti, Hf, Ta, Pt), were investigated. At temperatures below 538 K, the CO-oxidation activities of Pt and Pt3T increased in the order Pt < Pt3Ti < Pt3hHf < Pt3Ta. The center-of-gravity of the Pt d-band (the d-band center) of Pt and Pt3T was theoretically calculated to follow the trend Pt3Ti < Pt3Ta < Pt3Hf < Pt. The CO-oxidation activity showed a volcano-type dependence on the d-band center, where Pt3Ta exhibited a maximum in activity. Theoretical calculations demonstrated that the adsorption energy of CO on the catalyst surface monotonically decreases with the lowering of the d-band center because of diminished hybridization of the surface d-band and the lowest-unoccupied molecular orbital (LUMO) of CO. The observed volcano-type correlation between the d-band center and the CO oxidation activity is rationalized in terms of the CO adsorption energy, which counterbalances the surface coverage by CO and the rate of CO oxidation.

Graphical abstract: Correlation between the surface electronic structure and CO-oxidation activity of Pt alloys

Supplementary files

Article information

Article type
Paper
Submitted
31 Jul 2014
Accepted
11 Sep 2014
First published
17 Sep 2014

Phys. Chem. Chem. Phys., 2015,17, 4879-4887

Author version available

Correlation between the surface electronic structure and CO-oxidation activity of Pt alloys

H. Abe, H. Yoshikawa, N. Umezawa, Y. Xu, G. Saravanan, G. V. Ramesh, T. Tanabe, R. Kodiyath, S. Ueda, N. Sekido, Y. Yamabe-Mitarai, M. Shimoda, T. Ohno, F. Matsumoto and T. Komatsu, Phys. Chem. Chem. Phys., 2015, 17, 4879 DOI: 10.1039/C4CP03406F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements