Jump to main content
Jump to site search

Issue 45, 2014
Previous Article Next Article

Valence electronic structure of sublimated Fe4 single-molecule magnets: an experimental and theoretical characterization

Author affiliations

Abstract

The valence electronic structures of two single-molecule magnets (SMMs), [Fe4(L)2(dpm)6] and [Fe4(L)2(pta)6], (Hdpm = dipivaloylmethane, Hpta = pivaloyltrifluoroacetone, L3− = Ph–C(CH2O)33−), are investigated by means of ultraviolet photoemission spectroscopy (UPS) and ab initio calculations. The experimental UPS spectra of both compounds are analysed and compared with the total density of states (TDOS) computed with the hybrid functional PBE0. The substitution of half of the methyl groups in [Fe4(L)2(dpm)6] with fluorine atoms in [Fe4(L)2(pta)6] unexpectedly affects the spectrum shape in the Fermi region, thus becoming a useful fingerprint of the two SMMs. Moreover, a computational protocol at DFT + U level of theory is assessed on both compounds, which is in good agreement with the experimental spectroscopic and magnetic data. The basis for the future modelling of the adsorption of Fe4 clusters on surfaces is established.

Graphical abstract: Valence electronic structure of sublimated Fe4 single-molecule magnets: an experimental and theoretical characterization

Back to tab navigation

Supplementary files

Article information


Submitted
25 Jul 2014
Accepted
10 Sep 2014
First published
10 Sep 2014

J. Mater. Chem. C, 2014,2, 9599-9608
Article type
Paper

Valence electronic structure of sublimated Fe4 single-molecule magnets: an experimental and theoretical characterization

S. Ninova, V. Lanzilotto, L. Malavolti, L. Rigamonti, B. Cortigiani, M. Mannini, F. Totti and R. Sessoli, J. Mater. Chem. C, 2014, 2, 9599
DOI: 10.1039/C4TC01647E

Social activity

Search articles by author

Spotlight

Advertisements