Issue 27, 2014

A donor–acceptor cruciform π-system: high contrast mechanochromic properties and multicolour electrochromic behavior

Abstract

A donor–acceptor (D–A) cruciform conjugated luminophore DMCS-TPA was designed and synthesized. The DMCS-TPA solid shows both aggregation induced emission (AIE) effect and high contrast mechanochromic (MC) behavior with a remarkable spectral shift of 87 nm. The obvious fluorescence switching from yellowish green to orange can be realized by pressing at only 10 MPa or simply grinding. The photophysical properties, theory calculation and XPS results demonstrate that the extension of the conjugation length and subsequent enhancement of intramolecular charge transfer (ICT) transition are responsible for the improved MC performance. In addition, DMCS-TPA is readily deposited on the ITO electrode surface by the electrochemical method to form an electrochromic (EC) film with multiple colours showing (light green at 0 V, red at 1 V, grey at 1.1 V and blue at 1.45 V) and a high optical contrast of 65% at 769 nm. The results suggest that incorporation of electroactive moieties into luminophores to constitute D–A cruciform conjugated structures is a promising design strategy for preparing dual functional materials combining MC and EC properties.

Graphical abstract: A donor–acceptor cruciform π-system: high contrast mechanochromic properties and multicolour electrochromic behavior

Supplementary files

Article information

Article type
Paper
Submitted
15 Mar 2014
Accepted
26 Apr 2014
First published
30 Apr 2014

J. Mater. Chem. C, 2014,2, 5365-5371

A donor–acceptor cruciform π-system: high contrast mechanochromic properties and multicolour electrochromic behavior

J. Sun, X. Lv, P. Wang, Y. Zhang, Y. Dai, Q. Wu, M. Ouyang and C. Zhang, J. Mater. Chem. C, 2014, 2, 5365 DOI: 10.1039/C4TC00516C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements