Jump to main content
Jump to site search

Issue 20, 2014
Previous Article Next Article

The formation mechanism, improved photoluminescence and LED applications of red phosphor K2SiF6:Mn4+

Author affiliations

Abstract

A red phosphor K2SiF6:Mn4+ has been prepared by etching of SiO2 in HF solution at a KMnO4 concentration as low as 0.08 mol L−1. The luminescence properties of the phosphor have been improved obviously by using KF and H2O2. The structure, morphology and thermal stability of the phosphor have been investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and thermogravimetry and differential scanning calorimetry (TG-DSC), respectively. The formation mechanism of the red phosphor K2SiF6:Mn4+ is discussed in detail. Digital images and diffuse reflection spectra show that the phosphor is white under visible room light. An intense absorption band in the blue and a bright emission in red make the phosphor K2SiF6:Mn4+ a candidate for applications in InGaN–YAG:Ce type LEDs for high color rendering. A “warm” white light LED with an efficiency of 116 lm W−1 and a color rendering index of 89.9 at a color temperature of 3900 K has been obtained by fabricating YAG:Ce with K2SiF6:Mn4+ on an InGaN chip.

Graphical abstract: The formation mechanism, improved photoluminescence and LED applications of red phosphor K2SiF6:Mn4+

Back to tab navigation

Supplementary files

Article information


Submitted
23 Jan 2014
Accepted
08 Mar 2014
First published
10 Mar 2014

J. Mater. Chem. C, 2014,2, 3879-3884
Article type
Communication
Author version available

The formation mechanism, improved photoluminescence and LED applications of red phosphor K2SiF6:Mn4+

L. Lv, X. Jiang, S. Huang, X. Chen and Y. Pan, J. Mater. Chem. C, 2014, 2, 3879
DOI: 10.1039/C4TC00087K

Social activity

Search articles by author

Spotlight

Advertisements