Issue 48, 2014

Evaluation of borate bioactive glass scaffolds as a controlled delivery system for copper ions in stimulating osteogenesis and angiogenesis in bone healing

Abstract

Biocompatible synthetic scaffolds with enhanced osteogenic and angiogenic capacity are of great interest for the repair of large (critical size) bone defects. In this study, we investigated an approach based on the controlled delivery of copper (Cu) ions from borate bioactive glass scaffolds for stimulating angiogenesis and osteogenesis in a rodent calvarial defect model. Borate glass scaffolds (pore size = 200–400 μm) doped with varying amounts of Cu (0–3.0 wt% CuO) were created using a polymer foam replication technique. When immersed in simulated body fluid (SBF) in vitro, the scaffolds released Cu ions into the medium at a rate that was dependent on the amount of Cu in the glass and simultaneously converted to hydroxyapatite (HA). At the concentrations used, the Cu in the glass was not cytotoxic to human bone marrow derived stem cells (hBMSCs) cultured on the scaffolds and the alkaline phosphatase activity of the hBMSCs increased with increasing Cu in the glass. When implanted in rat calvarial defects for 8 weeks, the scaffolds doped with 3 wt% CuO showed a significantly better capacity to stimulate angiogenesis and regenerate bone when compared to the undoped glass scaffolds. Together, these results indicate that the controlled delivery of Cu ions from borate bioactive glass implants is a promising approach in healing bone defects.

Graphical abstract: Evaluation of borate bioactive glass scaffolds as a controlled delivery system for copper ions in stimulating osteogenesis and angiogenesis in bone healing

Article information

Article type
Paper
Submitted
14 Aug 2014
Accepted
27 Sep 2014
First published
30 Oct 2014

J. Mater. Chem. B, 2014,2, 8547-8557

Evaluation of borate bioactive glass scaffolds as a controlled delivery system for copper ions in stimulating osteogenesis and angiogenesis in bone healing

H. Wang, S. Zhao, J. Zhou, Y. Shen, W. Huang, C. Zhang, M. N. Rahaman and D. Wang, J. Mater. Chem. B, 2014, 2, 8547 DOI: 10.1039/C4TB01355G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements