Electrospun anatase TiO2 nanofibers with ordered mesoporosity
Abstract
Anatase TiO2 nanofibers (200–300 nm in diameter) with 3-dimensionally (3D) ordered pore structure and high surface area were synthesized by electrospinning technique. The unique combination of partially acetylacetone chelated Ti-alkoxide, viscosity-controlling cum high positive charge balancing agent PVP and structure director F127 yielded nanofibers with ordered mesoporosity similar to the Pm
m structure. Dynamic heating of the fibers in the temperature range 350–540 °C and simultaneous XRD studies revealed that the amorphous to anatase transformation initiated at about 400 °C with the retention of 3D mesoporosity up to the final heat-treatment stage. TEM studies also confirmed this. During amorphous to anatase conversion, the surface area decreased from 165 (350 °C) to 90 m2 g−1 (540 °C). The crystalline mesoporous nanofibers showed enhanced photocatalytic activity with reusability.
Please wait while we load your content...