Issue 31, 2014

Influence of carbon pore size on the discharge capacity of Li–O2 batteries

Abstract

Porous carbon materials play key roles in rechargeable Li–O2 batteries as oxygen diffusion media and sites for reversible electrode reactions. Despite tremendous efforts in the synthesis of various porous carbon materials, the influence of carbon materials on cell capacity remains unclear. Based on our study of eight different carbon electrode materials with various pore sizes and pore volumes in Li–O2 batteries, we found that the initial discharge capacity was hardly affected by the surface area or pore volume. Instead, it was directly correlated with the pore sizes. To further verify this finding, meso- and macro-porous carbon materials with pore sizes in the range of 20 to 100 nm were prepared using spherical silica as a template. The results clearly showed that the cell capacity increases with the increase of pore size and eventually reached its maximum at 7169 mA h g−1 at a pore size of 80 nm. A physical model proposed to illustrate the influence of carbon pore size on cell capacity is the formation of a monolayer of Li2O2 with a thickness of 7.8 nm inside the carbon pores during the discharge process which limits the diffusion of incoming oxygen at smaller pore size (<80 nm).

Graphical abstract: Influence of carbon pore size on the discharge capacity of Li–O2 batteries

Supplementary files

Article information

Article type
Paper
Submitted
10 Apr 2014
Accepted
19 May 2014
First published
30 May 2014

J. Mater. Chem. A, 2014,2, 12433-12441

Author version available

Influence of carbon pore size on the discharge capacity of Li–O2 batteries

N. Ding, S. W. Chien, T. S. A. Hor, R. Lum, Y. Zong and Z. Liu, J. Mater. Chem. A, 2014, 2, 12433 DOI: 10.1039/C4TA01745E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements