Deposition of topological insulator Sb2Te3 films by an MOCVD process
Abstract
Layered Sb2Te3 films were grown by a MOCVD process on Al2O3(0001) substrates at 400 °C by use of i-Pr3Sb and Et2Te2 and characterized by SEM, AFM, XRD, EDX and Auger spectroscopy. The electrical sheet resistivity was measured in the range of 4 to 400 K, showing a monotonic increase with increasing temperature. The valence band structure probed by angle-resolved photoemission shows the detailed dispersions of the bulk valence band and the topological surface state of a quality no less than for optimized bulk single crystals. The surface state dispersion gives a Dirac point roughly 30 meV above the Fermi level leading to hole doping and the presence of bulk valence states at the Fermi energy.
Please wait while we load your content...