Issue 23, 2014

Na3V2(PO4)3@C core–shell nanocomposites for rechargeable sodium-ion batteries

Abstract

Na3V2(PO4)3 (NVP) is an attractive cathode material for sodium ion batteries due to its high theoretical energy density and stable three-dimensional (3D) NASICON structure. In this paper, a NVP@C core–shell nanocomposite has been synthesized through a hydrothermal assisted sol–gel method. Ascorbic acid and polyethylene glycol 400 (PEG-400) were synergistically used to control the particle growth and provide the surface coating of conductive carbon. The as-prepared nanocomposite was composed of a nanosized Na3V2(PO4)3 core with a typical size of ∼40 nm and a uniformly amorphous carbon shell with the thickness of a few nanometers. The electrode performance of the NVP@C core–shell nanocomposite as cathode for sodium ion batteries is investigated and compared with that of bare NVP and NVP/C. Among the samples examined, the NVP@C nanocomposite showed the best cycle life and rate capability. It rendered an initial capacity of 104.3 mA h g−1 at 0.5 C and 94.9 mA h g−1 at 5 C with a remarkable capacity retention of 96.1% after 700 cycles. Moreover, a full cell using the as-prepared nanocomposite as both the cathode and the anode active material has been successfully built, showing a reversible capacity of 90.9 mA h g−1 at 2 C with an output voltage of about 1.7 V and a specific energy density of about 154.5 W h kg−1. The enhanced electrode performance is attributed to the combination of particle downsizing and carbon coating, which can favor the migration of both electrons and ions.

Graphical abstract: Na3V2(PO4)3@C core–shell nanocomposites for rechargeable sodium-ion batteries

Supplementary files

Article information

Article type
Paper
Submitted
07 Jan 2014
Accepted
09 Apr 2014
First published
09 Apr 2014

J. Mater. Chem. A, 2014,2, 8668-8675

Author version available

Na3V2(PO4)3@C core–shell nanocomposites for rechargeable sodium-ion batteries

W. Duan, Z. Zhu, H. Li, Z. Hu, K. Zhang, F. Cheng and J. Chen, J. Mater. Chem. A, 2014, 2, 8668 DOI: 10.1039/C4TA00106K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements