Shape-controlled porous nanocarbons for high performance supercapacitors†
Abstract
Porous activated nanocarbons with well-controlled dimensionality and morphology (i.e. 0D activated carbon nanoparticles, 1D activated carbon nanotubes, and 2D activated carbon nanosheets) were derived successfully from different template-induced polyaniline nanostructures by facile carbonization and activation processes. The obtained nanocarbons show large specific surface areas (1332–2005 m2 g−1), good conductivities, and highly porous nanoscale architectures. The supercapacitors fabricated using the shape-controlled nanocarbons exhibit high specific capacitance, excellent rate capability, and superior long-term cycling stability in both aqueous and ionic liquid electrolytes. More importantly, a very high energy density of 50.5 W h kg−1 with a power density of 17.4 kW kg−1 can be obtained from the activated carbon nanotube based supercapacitors in an ionic liquid electrolyte (with a charge time of ∼10 s), making the shape-controlled nanocarbons promising candidates for high-performance energy storage devices.