Issue 16, 2014

A sinteractive Ni–BaZr0.8Y0.2O3−δ composite membrane for hydrogen separation

Abstract

BaZr0.8Y0.2O3−δ (BZY) is an excellent candidate material for hydrogen permeation membranes due to its high bulk proton conductivity, mechanical robustness, and chemical stability in H2O- and CO2-containing environments. Unfortunately, the use of BZY as a separation membrane has been greatly restrained by its highly refractory nature, poor grain boundary proton conductivity, high number of grain boundaries resulting from limited grain growth during sintering, as well as low electronic conductivity. These problems can be resolved by the fabrication of a Ni–BZY composite membrane with large BZY grains, which requires the development of a sinteractive Ni–BaZr0.8Y0.2O3−δ materials system. In this work, Ni–BZY composite membranes have been fabricated by three methods: (i) a combined EDTA-citric method, (ii) a solid state reactive sintering method, and (iii) a solid state reaction method. The effects of different fabrication methods on the sintering activity, microstructure, and phase composition have been systematically investigated by dilatometry, scanning electron microscopy, and powder X-ray diffraction. After reduction, only Ni–BZY membranes prepared through the solid state reaction method were observed to be dense with large BZY grains (∼1 μm). It has been found that the densification and grain growth of Ni–BZY composite membranes were controlled by the method and sequence of NiO introduction during composite membrane processing. After process optimization, a 0.44 mm-thick Ni–BZY dense composite membrane was fabricated using the solid state reaction method which exhibited a hydrogen flux of 4.3 × 10−8 mol cm−2 s−1 in wet 40% H2 at 900 °C, significantly higher than those of non-BaCeO3-based hydrogen separation membranes.

Graphical abstract: A sinteractive Ni–BaZr0.8Y0.2O3−δ composite membrane for hydrogen separation

Supplementary files

Article information

Article type
Paper
Submitted
19 Nov 2013
Accepted
05 Feb 2014
First published
06 Feb 2014

J. Mater. Chem. A, 2014,2, 5825-5833

A sinteractive Ni–BaZr0.8Y0.2O3−δ composite membrane for hydrogen separation

S. Fang, S. Wang, K. S. Brinkman and F. Chen, J. Mater. Chem. A, 2014, 2, 5825 DOI: 10.1039/C3TA14777K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements