Issue 7, 2014

Simulations of hydrogen sorption in rht-MOF-1: identifying the binding sites through explicit polarization and quantum rotation calculations

Abstract

Grand canonical Monte Carlo (GCMC) simulations of hydrogen sorption were performed in rht-MOF-1, a metal–organic framework (MOF) that consists of isophthalate groups joined by copper paddlewheel clusters and Cu3O trimers through tetrazolate moeities. This is a charged rht-MOF that contains extra-framework nitrate counterions within the material. For the simulations performed herein, excellent agreement with experiment was achieved for the simulated hydrogen sorption isotherms and calculated isosteric heat of adsorption, Qst, values only when using a polarizable potential. Thermodynamic agreement is demonstrated via comparing to experimental isotherms and binding sites are revealed by combining simulation and inelastic neutron scattering (INS) data. Simulations involving explicit many-body polarization interactions assisted in the determination of the binding sites in rht-MOF-1 through the distribution of the induced dipoles that led to strong adsorbate interactions. Four distinct hydrogen sorption sites were determined from the polarization distribution: the nitrate ions located in the corners of the truncated tetrahedral cages, the Cu2+ ions of the paddlewheels that project into the truncated tetrahedral and truncated octahedral cages (Cu1 ions), the Cu2+ ions of the Cu3O trimers (Cu3 ions), and the sides of the paddlewheels in the cuboctahedral cage. The simulations revealed that the initial sorption sites for hydrogen in rht-MOF-1 are the nitrate ions; this site corresponds to the high initial Qst value for hydrogen (9.5 kJ mol−1) in the MOF. The radial distribution functions, g(r), about the Cu2+ ions at various loadings revealed that the Cu1 ions are the preferred open-metal sorption sites for hydrogen at low loading, while the Cu3 ions become occupied at higher loadings. The validation of the aforementioned sorption sites in rht-MOF-1 was confirmed by calculating the two-dimensional quantum rotational levels about each site and comparing the levels to the transitions that were observed in the experimental INS spectra for hydrogen in the compound. For each binding site, the rotational transitions from j = 0 to j = 1 were in good agreement to certain transitions that were observed in the INS spectra. From these calculations, the assignment of the peaks in the INS spectra for hydrogen in rht-MOF-1 has been made.

Graphical abstract: Simulations of hydrogen sorption in rht-MOF-1: identifying the binding sites through explicit polarization and quantum rotation calculations

Supplementary files

Article information

Article type
Paper
Submitted
08 Nov 2013
Accepted
06 Dec 2013
First published
11 Dec 2013

J. Mater. Chem. A, 2014,2, 2088-2100

Author version available

Simulations of hydrogen sorption in rht-MOF-1: identifying the binding sites through explicit polarization and quantum rotation calculations

T. Pham, K. A. Forrest, A. Hogan, K. McLaughlin, J. L. Belof, J. Eckert and B. Space, J. Mater. Chem. A, 2014, 2, 2088 DOI: 10.1039/C3TA14591C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements