Issue 47, 2014

Lipid directed assembly of the HIV capsid protein

Abstract

Experimental evidence for in vivo capsid assembly suggests that capsid formation initiates from interactions between capsid (CA) proteins and lipids in the viral envelope. Various in vitro studies aiming to elucidate the detailed mechanisms of capsid self-assembly products have been carried out in conditions far removed from those, which would be encountered in a physiological environment. In this work we used lipid bilayers as a platform for studying the assembly of the CA protein with the rationale that the lipid–CA interactions play an important role in the nucleation of these structures. Observations using atomic force microscopy (AFM) have allowed a ‘curling tadpole’ mechanism to be suggested for the capsid self-assembly process. Stable dimeric CA proteins are able to move across the lipid bilayer to associate into trimers-of-dimers. These trimers form distinctly curved chains, which coil up to form larger features. As the feature grows additional trimers associate with the feature, giving a tadpole-like appearance. By comparing capsid assembly on mica, on single component lipid bilayers, and phase separated lipid bilayers, it was possible to determine the effect of lipid–protein interactions on capsid assembly.

Graphical abstract: Lipid directed assembly of the HIV capsid protein

Article information

Article type
Paper
Submitted
21 Aug 2014
Accepted
20 Oct 2014
First published
23 Oct 2014

Soft Matter, 2014,10, 9562-9567

Author version available

Lipid directed assembly of the HIV capsid protein

P. Miles and D. Frankel, Soft Matter, 2014, 10, 9562 DOI: 10.1039/C4SM01860E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements