Growth of equilibrium structures built from a large number of distinct component types†
Abstract
We use simple analytic arguments and lattice-based computer simulations to study the growth of structures made from a large number of distinct component types. Components possess ‘designed’ interactions, chosen to stabilize an equilibrium target structure in which each component type has a defined spatial position, as well as ‘undesigned’ interactions that allow components to bind in a compositionally-disordered way. We find that high-fidelity growth of the equilibrium target structure can happen in the presence of substantial attractive undesigned interactions, as long as the energy scale of the set of designed interactions is chosen appropriately. This observation may help explain why equilibrium DNA ‘brick’ structures self-assemble even if undesigned interactions are not suppressed [Ke et al. Science, 338, 1177, (2012)]. We also find that high-fidelity growth of the target structure is most probable when designed interactions are drawn from a distribution that is as narrow as possible. We use this result to suggest how to choose complementary DNA sequences in order to maximize the fidelity of multicomponent self-assembly mediated by DNA. We also comment on the prospect of growing macroscopic structures in this manner.