Effect of external electric fields on the phase behavior of colloidal silica rods
Abstract
We examine the effect of external electric fields on the behavior of colloidal silica rods. We find that the electric fields can be used to induce para-nematic and para-smectic phases, and to reduce the number of defects in smectic phases. At high field strengths, a new crystal structure was observed that consisted of strings of rods ordered in a hexagonal pattern in which neighboring rods were shifted along their length. We also present a simple model to describe this system, which we used in computer simulations to calculate the phase diagram for rods of L/D = 6, with L the end-to-end length of the rods and D the diameter of the rods. Our theoretical predictions for the phase behavior agree well with the experimental observations.