Molecular understanding of a potential functional link between antimicrobial and amyloid peptides
Abstract
Antimicrobial and amyloid peptides do not share common sequences, typical secondary structures, or normal biological activity but both the classes of peptides exhibit membrane-disruption ability to induce cell toxicity. Different membrane-disruption mechanisms have been proposed for antimicrobial and amyloid peptides, individually, some of which are not exclusive to either peptide type, implying that certain common principles may govern the folding and functions of different cytolytic peptides and associated membrane disruption mechanisms. Particularly, some antimicrobial and amyloid peptides have been identified to have dual complementary amyloid and antimicrobial properties, suggesting a potential functional link between amyloid and antimicrobial peptides. Given that some similar structural and membrane-disruption characteristics exist between the two classes of peptides, this review summarizes major findings, recent advances, and future challenges related to antimicrobial and amyloid peptides and strives to illustrate the similarities, differences, and relationships in the sequences, structures, and membrane interaction modes between amyloid and antimicrobial peptides, with a special focus on direct interactions of the peptides with the membranes. We hope that this review will stimulate further research at the interface of antimicrobial and amyloid peptides – which has been studied less intensively than either type of peptides – to decipher a possible link between both amyloid pathology and antimicrobial activity, which can guide drug design and peptide engineering to influence peptide–membrane interactions important in human health and diseases.