Issue 34, 2014

Driving knots on DNA with AC/DC electric fields: topological friction and memory effects

Abstract

The dynamical properties of entangled polyelectrolytes are investigated theoretically and computationally for a proposed novel micromanipulation setup. Specifically, we investigate the effects of DC and AC electric fields acting longitudinally on knotted DNA chains, modelled as semiflexible chains of charged beads, under mechanical tension. We consider various experimentally accessible values of the field amplitude and frequency as well as several of the simplest knot types. In particular, we consider both torus and twist knots because they are respectively known to be able or unable to slide along macroscopic threads and ropes. Strikingly, this qualitative distinction disappears in this microscopic context because all the considered knot types acquire a systematic drift in the direction of the electric force. Notably, the knot drift velocity and diffusion coefficient in zero field (both measurable also experimentally) can be used to define a characteristic “frictional” lengthscale for the various knot types. This previously unexplored length provides valuable information on the extent of self-interactions in the nominal knotted region. It is finally observed that the motion of a knot can effectively follow the AC field only if the driving period is larger than the knot relaxation time (for which the self-diffusion time provides an upper bound). These results suggest that salient aspects of the intrinsic dynamics of knots in DNA chains could be probed experimentally by means of external, time-dependent electric fields.

Graphical abstract: Driving knots on DNA with AC/DC electric fields: topological friction and memory effects

Supplementary files

Article information

Article type
Paper
Submitted
20 Jan 2014
Accepted
05 Jun 2014
First published
12 Jun 2014

Soft Matter, 2014,10, 6491-6498

Author version available

Driving knots on DNA with AC/DC electric fields: topological friction and memory effects

M. Di Stefano, L. Tubiana, M. Di Ventra and C. Micheletti, Soft Matter, 2014, 10, 6491 DOI: 10.1039/C4SM00160E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements