Issue 14, 2014

Optimal shapes and stresses of adherent cells on patterned substrates

Abstract

We investigate a continuum mechanical model for an adherent cell on two dimensional adhesive micropatterned substrates. The cell is modeled as an isotropic and homogeneous elastic material subject to uniform internal contractile stresses. The build-up of tension from cortical actin bundles at the cell periphery is incorporated by introducing an energy cost for bending the cell boundary, resulting in a resistance to changes in the local curvature. Integrin-based adhesions are modeled as harmonic springs that pin the cell to adhesive patches of a predefined geometry. Using Monte Carlo simulations and analytical techniques we investigate the competing effects of bulk contractility and cortical bending rigidity in regulating cell shapes on non-adherent regions. We show that the crossover from convex to concave cell edges is controlled by the interplay between contractile stresses and boundary bending rigidity. In particular, the cell boundary becomes concave beyond a critical value of the contractile stress that is proportional to the cortical bending rigidity. Furthermore, the intracellular stresses are found to be largely concentrated at the concave edge of the cell. The model can be used to generate a cell-shape phase diagram for each specific adhesion geometry.

Graphical abstract: Optimal shapes and stresses of adherent cells on patterned substrates

Article information

Article type
Paper
Submitted
15 Oct 2013
Accepted
08 Jan 2014
First published
10 Jan 2014

Soft Matter, 2014,10, 2424-2430

Optimal shapes and stresses of adherent cells on patterned substrates

S. Banerjee, R. Sknepnek and M. C. Marchetti, Soft Matter, 2014, 10, 2424 DOI: 10.1039/C3SM52647J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements