Issue 12, 2014

SANS study of highly resilient poly(ethylene glycol) hydrogels

Abstract

Polymer networks are critically important for numerous applications including soft biomaterials, adhesives, coatings, elastomers, and gel-based materials for energy storage. One long-standing challenge these materials present lies in understanding the role of network defects, such as dangling ends and loops, developed during cross-linking. These defects can negatively impact the physical, mechanical, and transport properties of the gel. Here we report chemically cross-linked poly(ethylene glycol) (PEG) gels formed through a unique cross-linking scheme designed to minimize defects in the network. The highly resilient mechanical properties of these systems (discussed in a previous publication) [J. Cui, M. A. Lackey, A. E. Madkour, E. M. Saffer, D. M. Griffin, S. R. Bhatia, A. J. Crosby and G. N. Tew, Biomacromolecules, 2012, 13, 584–588], suggests that this cross-linking technique yields more homogeneous network structures. Four series of gels were formed based on chains of 35 000 g mol−1, (35k), 12 000 g mol−1 (12k) g mol−1, 8000 g mol−1 (8k) and 4000 g mol−1 (4k) PEG. Gels were synthesized at five initial polymer concentrations ranging from 0.077 g mL−1 to 0.50 g mL−1. Small-angle neutron scattering (SANS) was utilized to investigate the network structures of gels in both D2O and d-DMF. SANS results show the resulting network structure is dependent on PEG length, transitioning from a more homogeneous network structure at high molecular weight PEG to a two phase structure at the lowest molecular weight PEG. Further investigation of the transport properties inherent to these systems, such as diffusion, will aid to further confirm the network structures.

Graphical abstract: SANS study of highly resilient poly(ethylene glycol) hydrogels

Article information

Article type
Paper
Submitted
10 Sep 2013
Accepted
06 Jan 2014
First published
07 Jan 2014

Soft Matter, 2014,10, 1905-1916

SANS study of highly resilient poly(ethylene glycol) hydrogels

E. M. Saffer, M. A. Lackey, D. M. Griffin, S. Kishore, G. N. Tew and S. R. Bhatia, Soft Matter, 2014, 10, 1905 DOI: 10.1039/C3SM52395K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements