Issue 12, 2014

N2O reduction at a dissymmetric {Cu2S}-containing mixed-valent center

Abstract

Through our bio-inspired approach toward replicating nitrous oxide reductase (N2Or) activity, treatment of the LMe(MAM)S–S ligand with [Cu(CH3CN)4](OTf) (OTf = trifluoromethanesulfonate ion) leads to the isolation of a new dissymmetric mixed-valent (MV) dicopper(II,I) [2·(H2O)(OTf)]+ containing a {Cu2S} core with labile triflate and water molecules at the copper centers. Whilst [2·(H2O)(OTf)]+ is prone to ligand exchange under particular conditions, a raft of spectroscopic investigations, combined with theoretical calculations demonstrate that its structure is retained in acetone solution. Compared to our previously reported inactive parent complex [1] (Angew. Chem. Int. Ed., 2010, 49 (44), 8249–8252) featuring a symmetric and saturated coordination sphere (N and S atoms from the ligand), [2·(H2O)(OTf)]+ is reactive towards nitrous oxide in acetone. Spectroscopic and theoretical studies combined with kinetic measurements show that exchangeable positions are required for N2O interaction. The isolation of the final product and its characterization by X-ray crystallography as a doubly bridged (μ-thiophenolato)(μ-hydroxo) dicopper(II) species [3·(μ-OH)(OTf)2] help to support the proposed reaction pathway. Implications for N2Or mechanism are discussed.

Graphical abstract: N2O reduction at a dissymmetric {Cu2S}-containing mixed-valent center

Supplementary files

Article information

Article type
Edge Article
Submitted
21 May 2014
Accepted
04 Aug 2014
First published
04 Aug 2014

Chem. Sci., 2014,5, 4774-4784

Author version available

N2O reduction at a dissymmetric {Cu2S}-containing mixed-valent center

C. Esmieu, M. Orio, S. Torelli, L. Le Pape, J. Pécaut, C. Lebrun and S. Ménage, Chem. Sci., 2014, 5, 4774 DOI: 10.1039/C4SC01487A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements