Issue 8, 2014

Size-dependent stability toward dissociation and ligand binding energies of phosphine ligated gold cluster ions

Abstract

The size-dependent properties of ultra-small gold cluster ions ligated with phosphines are important to their scalable synthesis and potential applications in catalysis and energy production. However, the size distribution of clusters prepared in solution often makes it challenging to extract thermodynamic and kinetic parameters for species containing an exact number of gold atoms and phosphine ligands in a specific charge state. Here, we report for the first time the experimental determination of the stability toward fragmentation and ligand binding energies of mass-selected cationic gold clusters ligated with triphenylphosphine. Employing surface-induced dissociation Au7L62+, Au8L62+, Au8L72+ and Au9L72+ (L = triphenylphosphine) clusters are demonstrated to fragment through loss of a neutral ligand (AunLm2+ → AunL(m−1)2+ + L), asymmetric fission (AunLm2+ → Au(n−1)L(m−2)+ + AuL2+) and more symmetric fission (Au7L62+ → Au4L3+ + Au3L3+) involving charge separation of the gold core. It is shown that a cluster containing exactly eight gold atoms and six triphenylphosphine ligands, which is the predominant species formed during the early stages of reduction synthesis in solution, is exceptionally stable towards dissociation compared to the other clusters due in part to its large ligand binding energy.

Graphical abstract: Size-dependent stability toward dissociation and ligand binding energies of phosphine ligated gold cluster ions

Supplementary files

Article information

Article type
Edge Article
Submitted
21 Mar 2014
Accepted
20 May 2014
First published
16 Jun 2014

Chem. Sci., 2014,5, 3275-3286

Size-dependent stability toward dissociation and ligand binding energies of phosphine ligated gold cluster ions

G. E. Johnson, T. Priest and J. Laskin, Chem. Sci., 2014, 5, 3275 DOI: 10.1039/C4SC00849A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements