Issue 9, 2014

Millisecond lifetime imaging with a europium complex using a commercial confocal microscope under one or two-photon excitation

Abstract

The long luminescence lifetime of lanthanide based bioprobes is a great advantage for their specific detection in autofluorescent or labelled cells and tissues. It is also a valuable tool for sensing the physicochemical microenvironment and molecular interactions by Förster resonance energy transfer (FRET). However, standard confocal and multiphoton laser scanning microscopes are not adapted for imaging with such temporal resolution, because the typical pixel dwell time is too short compared to the luminescence lifetime. We show that the rapid sampling rate and laser control of a usual confocal microscope can instead be used for precise measurement of long lifetime decays (μs to ms range). Furthermore, both raster- and line-scanning microscopes can specifically detect long luminescence signals in the time-gated mode by shifting the pinhole or the confocal slit in the lagging direction. We characterized the subcellular localization and accurately measured the millisecond luminescence lifetimes of the benchmark two-photon europium probe [Na]3[EuL1G3], and specifically imaged this label in the presence of short-lived fluorescent species. Fine variations of the luminescence lifetime of this lanthanide complex were revealed and mapped in cells in the presence of a FRET acceptor, allowing quantification of the FRET efficiency independently of donor concentration. These results demonstrate a high and yet unexploited potential of quantitative confocal and multiphoton microscopy for time-gated and lifetime imaging of lanthanide-based biological sensors.

Graphical abstract: Millisecond lifetime imaging with a europium complex using a commercial confocal microscope under one or two-photon excitation

Supplementary files

Article information

Article type
Edge Article
Submitted
12 Feb 2014
Accepted
07 May 2014
First published
08 May 2014

Chem. Sci., 2014,5, 3475-3485

Author version available

Millisecond lifetime imaging with a europium complex using a commercial confocal microscope under one or two-photon excitation

A. Grichine, A. Haefele, S. Pascal, A. Duperray, R. Michel, C. Andraud and O. Maury, Chem. Sci., 2014, 5, 3475 DOI: 10.1039/C4SC00473F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements