Issue 3, 2014

A 115In solid-state NMR study of low oxidation-state indium complexes

Abstract

115In solid-state NMR (SSNMR) spectroscopy is applied to characterise a variety of low oxidation-state indium(I) compounds. 115In static wideline SSNMR spectra of several In(I) complexes were acquired with moderate and ultra-high field NMR spectrometers (9.4 and 21.1 T, respectively). 115In MAS NMR spectra were obtained with moderate and ultra-fast (>60 kHz) spinning speeds at 21.1 T. In certain cases, variable-temperature (VT) 115In SSNMR experiments were performed to study dynamic behaviour and phase transitions. The indium electric field gradient (EFG) and chemical shift (CS) tensor parameters were determined from the experimental spectra. With the aid of first principles calculations, the tensor parameters and orientations are correlated to the structure and symmetry of the local indium environments. In addition, calculations aid in proposing structural models for samples where single crystal X-ray structures could not be obtained. The rapidity with which high quality 115In SSNMR spectra can be acquired at 21.1 T and the sensitivity of the 115In NMR parameters to the indium environment suggest that 115In SSNMR is a powerful probe of the local chemical environments of indium sites. This work demonstrates that 115In NMR can be applied to a wide range of important materials for the purpose of increasing our understanding of structures and dynamics at the molecular/atomic level, especially for the characterisation of disordered, microcrystalline and/or multi-valence solids for which crystal structures are unavailable.

Graphical abstract: A 115In solid-state NMR study of low oxidation-state indium complexes

Supplementary files

Article information

Article type
Edge Article
Submitted
09 Oct 2013
Accepted
27 Nov 2013
First published
29 Nov 2013

Chem. Sci., 2014,5, 982-995

A 115In solid-state NMR study of low oxidation-state indium complexes

H. Hamaed, K. E. Johnston, B. F. T. Cooper, V. V. Terskikh, E. Ye, C. L. B. Macdonald, D. C. Arnold and R. W. Schurko, Chem. Sci., 2014, 5, 982 DOI: 10.1039/C3SC52809J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements