Issue 2, 2014

Dinuclear ruthenium(ii) antimicrobial agents that selectively target polysomes in vivo

Abstract

Wide-field fluorescence microscopy at high magnification was used to study the intracellular binding site of Rubb16 in Escherichia coli. Upon incubation of E. coli cells at the minimum inhibitory concentration, Rubb16 localised at ribosomes with no significant DNA binding observed. Furthermore, Rubb16 condensed the ribosomes when they existed as polysomes. It is postulated that the condensation of polysomes would halt protein production, and thereby inhibit bacterial growth. The results of this study indicate that the family of inert dinuclear ruthenium complexes Rubbn selectively target RNA over DNA in vivo. Selective RNA targeting could be advantageous for the development of therapeutic agents, and because of differences in ribosome structure between bacteria and eukaryotic cells, the Rubbn complexes could be selectively toxic to bacteria. In support of this hypothesis, the toxicity of Rubb16 was found to be significantly less to liver and kidney cell lines than against a range of bacteria.

Graphical abstract: Dinuclear ruthenium(ii) antimicrobial agents that selectively target polysomes in vivo

Article information

Article type
Edge Article
Submitted
02 Aug 2013
Accepted
15 Nov 2013
First published
25 Nov 2013
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2014,5, 685-693

Dinuclear ruthenium(II) antimicrobial agents that selectively target polysomes in vivo

F. Li, E. J. Harry, A. L. Bottomley, M. D. Edstein, G. W. Birrell, C. E. Woodward, F. R. Keene and J. G. Collins, Chem. Sci., 2014, 5, 685 DOI: 10.1039/C3SC52166D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements