Jump to main content
Jump to site search

Issue 110, 2014
Previous Article Next Article

Investigating the thermoelectric properties of p-type half-Heusler Hfx(ZrTi)1−xCoSb0.8Sn0.2 by reducing Hf concentration for power generation

Author affiliations

Abstract

Based on the fact that Hf is much more expensive than other commonly used elements in HfCoSb-based half-Heusler materials, we studied the thermoelectric properties of the p-type half-Heusler Hfx(ZrTi)1−xCoSb0.8Sn0.2 by reducing Hf concentration. A peak ZT of ∼1.0 was achieved at 700 °C with the composition of Hf0.19Zr0.76Ti0.05CoSb0.8Sn0.2 by keeping the Hf/Zr ratio at 1/4 and Hf/Ti at 4/1. This composition has much reduced cost and similar thermoelectric performance compared with our previously reported best p-type half-Heusler: Hf0.44Zr0.44Ti0.12CoSb0.8Sn0.2. Due to the decreased usage of Hf, it is more favorable for consideration in applications. In addition, a higher output power is expected because of the higher power factor even though the conversion efficiency is the same due to the same ZT.

Graphical abstract: Investigating the thermoelectric properties of p-type half-Heusler Hfx(ZrTi)1−xCoSb0.8Sn0.2 by reducing Hf concentration for power generation

Back to tab navigation

Article information


Submitted
21 Oct 2014
Accepted
21 Nov 2014
First published
21 Nov 2014

RSC Adv., 2014,4, 64711-64716
Article type
Communication
Author version available

Investigating the thermoelectric properties of p-type half-Heusler Hfx(ZrTi)1−xCoSb0.8Sn0.2 by reducing Hf concentration for power generation

R. He, H. S. Kim, Y. Lan, D. Wang, S. Chen and Z. Ren, RSC Adv., 2014, 4, 64711
DOI: 10.1039/C4RA14343D

Social activity

Search articles by author

Spotlight

Advertisements