Effect of selective oxidation of bacterial cellulose on degradability in phosphate buffer solution and their affinity for epidermal cell attachment
Abstract
Bacterial cellulose (BC) has a very promising application in biomedical engineering due to its three dimensional nano-network and good biocompatibility. However, it is difficult for BC to degrade in vivo without cellulase, which has limited its potential application. In this work, oxidized bacterial cellulose (OBC) was prepared according to selective oxidation with NO2 gas. The structure and micromorphology of OBC were characterized by FTIR, XRD, and SEM. The results showed that the oxidation did not break the crystal structure or alter the crystallinity of BC. OBC still maintained the 3D nano-fibrils network, whereas the diameter of each fiber in the nano-fibrils network of OBC became wider. When immersed in PBS, OBC degraded gradually, and the mass loss rate and degradation rate of OBC were much higher than those of BC after degradation for 60 days. Degradation occurred from surface to inside and the oxidized part of the network favored the process. Results of cell adhesion and proliferation studies also revealed that OBC had excellent cellular affinity similar to BC.