Issue 94, 2014

The impact of ZIF-8 particle size and heat treatment on CO2/CH4 separation using asymmetric mixed matrix membrane

Abstract

In this study, zeolitic imidazole framework 8 (ZIF-8) particles of different sizes were synthesized in aqueous media by varying the concentration of the base-type additive, triethylamine (TEA). ZIF-8 with particle sizes of ∼134 nm and ∼288 nm with surface areas of 418.44 m2 g−1 and 491.54 m2 g−1 were obtained without altering the crystalline structure. Synthesized ZIF-8 was further heat treated at 100 °C for a minimum of 12 hours, which led to an enhancement of its phase crystallinity and a surface area of 981.1 m2 g−1. Mixed matrix membranes (MMMs) were prepared via the dry–wet phase inversion method by dispersing as-synthesized ZIF-8s, heat-treated ZIF-8s and commercial ZIF-8 (∼493 nm) into a polysulfone (PSf) matrix. The thermal stability and mechanical strength of the membranes showed significant improvement after the incorporation of ZIF-8s. The MMMs were further subjected to the permeation experiments of CO2 and CH4. Although the majority of MMMs showed less selectivity than the neat PSf membrane, the incorporation of heat-treated ZIF-8 of the smallest size, exhibited CO2/CH4 selectivity of 28.5, which is significantly higher than the 19.43 obtained for the neat PSf membrane. Therefore, different ZIF-8 treatment protocols and particle sizes affect the MMMs performance significantly.

Graphical abstract: The impact of ZIF-8 particle size and heat treatment on CO2/CH4 separation using asymmetric mixed matrix membrane

Article information

Article type
Paper
Submitted
10 Aug 2014
Accepted
26 Sep 2014
First published
26 Sep 2014

RSC Adv., 2014,4, 52530-52541

The impact of ZIF-8 particle size and heat treatment on CO2/CH4 separation using asymmetric mixed matrix membrane

N. A. H. M. Nordin, A. F. Ismail, A. Mustafa, R. S. Murali and T. Matsuura, RSC Adv., 2014, 4, 52530 DOI: 10.1039/C4RA08460H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements