Issue 89, 2014

Mechanical pretreatments of lignocellulosic biomass: towards facile and environmentally sound technologies for biofuels production

Abstract

The transformation of lignocellulosic biomass into biofuels represents an interesting and sustainable alternative to fossil fuel for the near future. However, one still faces some major challenges for the technology to be fully realized including feedstock costs, novel pretreatment processes, production, transportation, and environmental impact of the full chain. The development of new technologies focused to increase the efficiency of cellulose conversion to biofuels determines successful implementation. Mechanical fractionation is an essential step in order to increase final carbohydrate output, appropriate particle sizes and densification, enzymatic accessibility, and bioconversion affectivity without the production of toxic side streams. In this review article, we surveyed a substantial amount of previous work in mechanical fractionation or pretreatments of a variety of lignocellulosic biomasses; these include numerous milling schemes and extrusions, and their impacts on the physical and physicochemical properties of the lignocellulosic matrix (crystallinity, surface area, particle size, etc). We have also compared results with other pure chemical and physicochemical pretreatments in order to show the new aspects and advantages/disadvantages of such an approach. Last, but not least, the effect of mechanical treatment and physical properties on enzymatic hydrolysis and bioconversion has been discussed, with potentially interesting dry lignocellulosic biorefinery schemes proposed.

Graphical abstract: Mechanical pretreatments of lignocellulosic biomass: towards facile and environmentally sound technologies for biofuels production

Article information

Article type
Review Article
Submitted
24 Jul 2014
Accepted
18 Sep 2014
First published
18 Sep 2014

RSC Adv., 2014,4, 48109-48127

Mechanical pretreatments of lignocellulosic biomass: towards facile and environmentally sound technologies for biofuels production

A. Barakat, C. Mayer-Laigle, A. Solhy, R. A. D. Arancon, H. de Vries and R. Luque, RSC Adv., 2014, 4, 48109 DOI: 10.1039/C4RA07568D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements