Issue 71, 2014

Simultaneous and multisite tumor rapid-target bioimaging through in vivo biosynthesis of fluorescent gold nanoclusters

Abstract

Simultaneous and multisite tumor rapid-target bioimaging has been realized in this contribution through in vivo biosynthesis of fluorescent gold nanoclusters (GNCs). The selectively biosynthesized fluorescent GNCs in cancer cells or tumor tissues by systemic bio-administration of gold precursors via tail vein injection in tumor bearing mice were found to exhibit a highly efficient tumor targeting effect. Intracellular fluorescence studies demonstrate that in vivo biosynthesized GNCs from cancer cells could efficiently label and image target cells with bright photostable fluorescence, which could be readily exploited for the rapid imaging in vivo of the biodistribution of GNCs in mice and thus efficiently determine the precise target sites of fluorescent GNCs specifically biosynthesized in tumor tissues with high spatiotemporal resolution. Moreover, histopathologic analyses of H&E-stained tissue sections indicate that no side effects for mice treated with gold precursors are found during the process of systemic bio-administration for gold precursors. This raises the possibility of utilizing the in vivo biosynthesized GNCs through intravenous administration of biocompatible gold precursors as promising and effective biomarkers for rapid tumor diagnosis and precise surgical intervention.

Graphical abstract: Simultaneous and multisite tumor rapid-target bioimaging through in vivo biosynthesis of fluorescent gold nanoclusters

Article information

Article type
Paper
Submitted
28 May 2014
Accepted
13 Aug 2014
First published
13 Aug 2014

RSC Adv., 2014,4, 37790-37795

Author version available

Simultaneous and multisite tumor rapid-target bioimaging through in vivo biosynthesis of fluorescent gold nanoclusters

J. Wang, J. Ye, H. Jiang, S. Gao, W. Ge, Y. Chen, C. Liu, C. Amatore and X. Wang, RSC Adv., 2014, 4, 37790 DOI: 10.1039/C4RA05021E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements