Issue 41, 2014

A highly responsive UV photodetector based on hierarchical TiO2 nanorod/nanoparticle composite

Abstract

Hierarchical TiO2 nanorod/nanoparticle composites were successfully prepared by TiCl4 modification of vertically aligned TiO2 nanorod (NR) arrays. After the hydrolysis of TiCl4 at room temperature, TiO2 nanoparticles (NPs) were deposited on the surface of TiO2 NRs. Morphology and structure analysis demonstrated that the TiO2 NPs were distributed around the entire surface of TiO2 NRs due to the easy permeation of TiCl4 solution between the NR space. Moreover, the high concentration of TiCl4 and long reaction time are favorable for the generation of more TiO2 NPs, which correspondingly increases the surface area of the composite to a large extent. Compared with most reported TiO2-based UV photodetectors (PDs), the present TiO2 NR/NP composite-based PDs simultaneously exhibit an extremely high response and a relatively fast response speed. The maxima of responsivity and response speed, which are 1973 A W−1 and 0.47 s (rise time) and 1.02 s (decay time), respectively, are obtained from the sample of TiO2 NR/NP-0.4 M-72 h. The fast and high photoresponses are ascribed to the large surface area provided by TiO2 NPs, the well-defined electron transport pathway offered from TiO2 NRs and the homojunction formed at the interface between them. Moreover, together with the high responsivity and the relatively fast response speed, significant UV light selectivity and a very good linear relationship between a photoresponse and the UV light intensity suggest that the present UV PDs are very competitive and highly applicable in UV light detection.

Graphical abstract: A highly responsive UV photodetector based on hierarchical TiO2 nanorod/nanoparticle composite

Article information

Article type
Paper
Submitted
22 Feb 2014
Accepted
11 Apr 2014
First published
11 Apr 2014

RSC Adv., 2014,4, 21340-21346

Author version available

A highly responsive UV photodetector based on hierarchical TiO2 nanorod/nanoparticle composite

W. Zheng, X. Li, G. He, X. Yan, R. Zhao and C. Dong, RSC Adv., 2014, 4, 21340 DOI: 10.1039/C4RA01553C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements