Issue 15, 2014

Actuation based on thermo/photosalient effect: a biogenic smart hybrid driven by light and heat

Abstract

Aimed at the design of efficient smart actuating materials, we have fabricated a self-actuating material that sets the platform for conceptually new, hybrid biocompatible actuators capable of dual mechanical response—by changes in temperature and by stimulation with weak ultraviolet or blue visible light. We demonstrate herein that microcrystallites of thermosalient and photosalient (leaping) solids can effectively utilize thermal or light energy and act as a robust and dynamically active “skeleton” to actuate sodium caseinate films as an elastic, flexible, biocompatible, natural protein matrix, similar to artificial muscle. The spectroscopic, kinematic and mechanical profiles of the new material are all consistent with a mechanism whereby the cooperative strains induced by reshaping and motions of the thermosalient crystals trigger macroscopic mechanical deformation of the matrix. The elastic medium absorbs the stress, thus providing reinforcing feedback to the brittle crystals. The hybrid material conveniently combines fast energy absorption and conversion within single crystals and elasticity of polymers and displays a remarkable improvement in the tensile properties relative to the non-doped caseinate. Being based on natural protein, this thermally and photoresponsive artificial muscle is also biologically compatible and environmentally benign.

Graphical abstract: Actuation based on thermo/photosalient effect: a biogenic smart hybrid driven by light and heat

Supplementary files

Article information

Article type
Paper
Submitted
14 Nov 2013
Accepted
07 Jan 2014
First published
08 Jan 2014

RSC Adv., 2014,4, 7640-7647

Author version available

Actuation based on thermo/photosalient effect: a biogenic smart hybrid driven by light and heat

S. Chandra Sahoo, N. K. Nath, L. Zhang, M. H. Semreen, T. H. Al-Tel and P. Naumov, RSC Adv., 2014, 4, 7640 DOI: 10.1039/C3RA46688D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements