Issue 13, 2014

Theoretical study on a novel high-energy density material 4,6,10,12-tetranitro-5,11-bis(nitroimino)-2,8-dioxa-4,6,10,12-tetraaza-tricyclo[7,3,0,03,7]dodecane

Abstract

A novel high-energy density material (HEDM) 4,6,10,12-tetranitro-5,11-bis(nitroimino)-2,8-dioxa-4,6,10,12-tetraaza-tricyclo[7,3,0,03,7]dodecane was designed and studied by a density functional theory (DFT) method. The geometric structure and thermodynamic properties were investigated at the B3LYP/6-31G (d,p) level. The heat of formation (HOF) and detonation properties were predicted by isodesmic reactions and Kamlet–Jacobs equations. The bond dissociation energy (BDE) and impact sensitivity were also studied to give a better understanding of its chemical and physical properties. The calculated results indicate that 4,6,10,12-tetranitro-5,11-bis(nitroimino)-2,8-dioxa-4,6,10,12-tetraaza-tricyclo[7,3,0,03,7]dodecane belongs to the P[1 with combining macron] space group, with cell parameters Z = 2, a = 13.554 Å, b = 8.552 Å, c = 15.575 Å, α = 70.638°, β = 29.515° and γ = 82.702°. In view of the heat of formation (HOF, 530.36 kJ mol−1), detonation velocity (D, 9.72 km s−1), detonation pressure (P, 45.12 GPa), bond dissociation energy (BDE, 109.85 kJ mol−1) and impact sensitivity (h50, 20.79 cm), it is predicted that 4,6,10,12-dinitro-5,11-bis(nitroimino)-2,8-dioxa-4,6,10,12-tetraaza-tricyclo[7,3,0,03,7] dodecane could be considered as a potential candidate high-energy density compound.

Graphical abstract: Theoretical study on a novel high-energy density material 4,6,10,12-tetranitro-5,11-bis(nitroimino)-2,8-dioxa-4,6,10,12-tetraaza-tricyclo[7,3,0,03,7]dodecane

Article information

Article type
Paper
Submitted
25 Oct 2013
Accepted
23 Dec 2013
First published
02 Jan 2014

RSC Adv., 2014,4, 6471-6477

Theoretical study on a novel high-energy density material 4,6,10,12-tetranitro-5,11-bis(nitroimino)-2,8-dioxa-4,6,10,12-tetraaza-tricyclo[7,3,0,03,7]dodecane

X. Jin, B. Hu, W. Lu, S. Gao, Z. Liu and C. Lv, RSC Adv., 2014, 4, 6471 DOI: 10.1039/C3RA46107F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements