Issue 14, 2014

Interaction of procyanidin B3 with bovine serum albumin

Abstract

Proanthocyanidins are a mixture of monomers, oligomers, and polymers of flavan-3-ols that are widely distributed in the plant kingdom. One of the most widely studied proanthocyanidins is procyanidin B3. In this study, the interaction between procyanidin B3 and bovine serum albumin (BSA) was investigated using isothermal titration calorimetry (ITC), in combination with fluorescence spectroscopy, UV-vis absorption spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, circular dichroism (CD) spectroscopy and molecular docking. Thermodynamic investigations reveal that the electrostatic interaction and hydrophobic interaction are the major binding forces in the binding of procyanidin B3 to BSA. The binding of procyanidin B3 to BSA is synergistically driven by enthalpy and entropy. Fluorescence experiments suggest that procyanidin B3 can quench the fluorescence of BSA through a static quenching mechanism. The obtained binding constants and the equilibrium fraction of unbound procyanidin B3 show that procyanidin B3 can be stored and transported from the circulatory system to reach its target organ. Binding site I is found to be the primary binding site for procyanidin B3, which is consistent with the result of molecular docking studies. Additionally, as shown by the UV-vis absorption, synchronous fluorescence spectroscopy, FT-IR and CD, procyanidin B3 may induce conformational and microenvironmental changes of BSA.

Graphical abstract: Interaction of procyanidin B3 with bovine serum albumin

Article information

Article type
Paper
Submitted
25 Aug 2013
Accepted
07 Jan 2014
First published
09 Jan 2014

RSC Adv., 2014,4, 7301-7312

Interaction of procyanidin B3 with bovine serum albumin

X. Li, G. Wang, D. Chen and Y. Lu, RSC Adv., 2014, 4, 7301 DOI: 10.1039/C3RA44653K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements