Issue 17, 2014

Synthesis and characterization of isosorbide-based polyphosphonates as biobased flame-retardants

Abstract

A new isosorbide-based polyphosphate was synthesized and applied as a flame-retardant for polylactic acid (PLA). The storage modulus and glass transition temperature of PLA/polyphosphonate blends was unaffected by the inclusion of polyphosphonate, but moderate depressions of PLA's tensile strength (16%, 28%, and 45% reduction from PLA at a polyphosphonate mass percentage of 5%, 10%, and 15%, respectively) and strain-at-break (0%, 17%, and 30% reduction from PLA at a polyphosphonate mass percentage of 5%, 10%, and 15%, respectively) were observed. Modified UL-94 flammability testing indicated that isosorbide-based polyphosphonates are effective flame retardants for PLA and are able to self-extinguish flames in less than 2 s to achieve V2 and V0 ratings at polyphosphonate mass percentage of 5% and 15%, respectively. Fire test data indicates a gas phase mechanism that can quench the flame when no external radiant heat flux is present (e.g., in modified UL-94 testing) but does not affect the material's heat release rate in forced combustion (e.g., in cone calorimetry). Use of the biobased flame retardants described herein yields flame retardant PLA containing up to 97% by mass of bio-derived content.

Graphical abstract: Synthesis and characterization of isosorbide-based polyphosphonates as biobased flame-retardants

Supplementary files

Article information

Article type
Paper
Submitted
28 Apr 2014
Accepted
30 May 2014
First published
02 Jun 2014

Polym. Chem., 2014,5, 5139-5146

Synthesis and characterization of isosorbide-based polyphosphonates as biobased flame-retardants

T. C. Mauldin, M. Zammarano, J. W. Gilman, J. R. Shields and D. J. Boday, Polym. Chem., 2014, 5, 5139 DOI: 10.1039/C4PY00591K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements