Issue 19, 2014

In situ synthesis of thermo-responsive ABC triblock terpolymer nano-objects by seeded RAFT polymerization

Abstract

RAFT polymerization of N-isopropylacrylamide under heterogeneous conditions in the presence of diblock copolymer nano-objects of polystyrene-block-poly(N,N-dimethylacrylamide) trithiocarbonate (PS-b-PDMA-TTC) with the Z-group RAFT terminal on the outer side of the solvophilic poly(N,N-dimethylacrylamide) (PDMA) block is performed. This heterogeneous RAFT polymerization, which is named seeded RAFT polymerization, affords the in situ synthesis of the polystyrene-block-poly(N,N-dimethylacrylamide)-block-poly(N-isopropylacrylamide) (PS-b-PDMA-b-PNIPAM) triblock terpolymer nano-objects. The molecular weight of the triblock terpolymer linearly increases with the monomer conversion during the seeded RAFT polymerization. The morphology of the PS-b-PDMA-b-PNIPAM triblock terpolymer nano-objects is merely duplicated from the seed of the PS-b-PDMA-TTC diblock copolymer, which is the binary mixture of nanospheres and nanorods, when the polymerization degree (DP) of the poly(N-isopropylacrylamide) (PNIPAM) block is low or moderately large. When the DP of the PNIPAM block is relatively large, the triblock terpolymer nanospheres are formed. The size of the PS-b-PDMA-b-PNIPAM triblock terpolymer nano-objects slightly increases initially and subsequently decreases with the monomer conversion during the seeded RAFT polymerization. In water at temperature above the phase-transition temperature (PTT) of the PNIPAM block, the PNIPAM chains deposit onto the polystyrene (PS) core to form the triblock terpolymer multicompartment nano-objects containing a microphase separated solvophobic core of PS/PNIPAM and a solvophilic PDMA corona. Our findings are anticipated to be useful in preparation of concentrated ABC triblock terpolymer nano-objects.

Graphical abstract: In situ synthesis of thermo-responsive ABC triblock terpolymer nano-objects by seeded RAFT polymerization

Supplementary files

Article information

Article type
Paper
Submitted
10 Apr 2014
Accepted
30 May 2014
First published
30 May 2014

Polym. Chem., 2014,5, 5569-5577

Author version available

In situ synthesis of thermo-responsive ABC triblock terpolymer nano-objects by seeded RAFT polymerization

Y. Qu, F. Huo, Q. Li, X. He, S. Li and W. Zhang, Polym. Chem., 2014, 5, 5569 DOI: 10.1039/C4PY00510D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements