Jump to main content
Jump to site search

Issue 17, 2014
Previous Article Next Article

Stability of star-shaped RAFT polystyrenes under mechanical and thermal stress

Author affiliations

Abstract

Well-defined three-arm and four-arm star polymers designed via a Z-group approach carrying trithiocarbonate functionalities at the core are prepared via reversible addition-fragmentation chain transfer (RAFT) polymerization featuring molecular weights of Mn,SEC = 156 kDa, Đ = 1.16 (3-arm) and Mn,SEC = 162 kDa, Đ = 1.15 (4-arm) based on multi-angle laser light scattering (MALLS) detection, respectively. The star-shaped polystyrenes are subjected (in bulk) to thermal stress in the temperature range between 140 and 200 °C from 10 minutes up to 96 h. The thermally treated 3-arm and 4-arm star polymers are analyzed via size exclusion chromatography (SEC) to quantify the degradation process at variable temperatures as a function of time under an argon atmosphere. Cleavage rate coefficients of the star polymers are deduced as a function of temperature, resulting in activation parameters for the cleavage process, i.e. Ea = 131 kJ mol−1; A = 3.93 × 1011 s−1 (Mn,SEC = 156 kDa, Đ = 1.16, 3-arm star) and Ea, = 134 kJ mol−1; A = 9.13 × 1011 s−1 (Mn,SEC = 162 kDa, Đ = 1.15, 4-arm star), respectively. Processing of the star-shaped polymers is mimicked via a small scale counter rotating twin screw extrusion to achieve nonlinear shear and elongation flow under pressure. Furthermore, a rheological assessment via the linear shear deformation region (small amplitude oscillatory shear, SAOS) allows for a correlation of the processing conditions with the thermal degradation properties of the star polymers in the melt. Zero shear viscosity (η0) as a criterion of the degradation process is measured in the rheometer and correlated to the weight-average molecular weight, Mw.

Graphical abstract: Stability of star-shaped RAFT polystyrenes under mechanical and thermal stress

Back to tab navigation

Supplementary files

Publication details

The article was received on 05 Apr 2014, accepted on 06 May 2014 and first published on 08 May 2014


Article type: Paper
DOI: 10.1039/C4PY00484A
Citation: Polym. Chem., 2014,5, 5009-5019
  • Open access: Creative Commons BY license
  •   Request permissions

    Stability of star-shaped RAFT polystyrenes under mechanical and thermal stress

    O. Altintas, M. Abbasi, K. Riazi, A. S. Goldmann, N. Dingenouts, M. Wilhelm and C. Barner-Kowollik, Polym. Chem., 2014, 5, 5009
    DOI: 10.1039/C4PY00484A

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements